skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fontes, Clarissa_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Freezing tolerance plays a pivotal role in shaping the distribution and diversification of organisms. We investigated the dynamics of adaptation to climate and potential trade‐offs between stem freezing tolerance and growth rate in 48Quercusspecies. Species from colder regions exhibited higher freezing tolerance, lower growth rates and higher winter‐acclimation potential than species from warmer climates. Despite an evolutionary lag, freezing tolerance in oaks is closely aligned with its optimal state. Deciduous species showed marked variability in freezing tolerance across their broad climatic range, while evergreen species, confined to warm climates, displayed low freezing tolerance. Annual growth rates were constrained in all deciduous species, but those that evolved in warm latitudes lost freezing tolerance, precluding a trade‐off between freezing tolerance and growth. We provide evidence that the capacity to adapt to a wide range of thermal environments was critical to adaptive radiation and the current dominance of the North American oaks. 
    more » « less